Here, we evaluated the immuno-oncologic impact and anti-tumor efficacy of immune responses, contributing to the evasion of cancer cells from immune surveillance.

SUMMARY

The TAM family of receptor tyrosine kinases (RTKs), including TYRO3, AXL, and MER, have been implicated in the pathogenesis and progression of many cancer types. In cancer cells, overexpression of TAM RTKs is associated with mechanisms of resistance and mesenchymal phenotypes. In immune cells, however, TAM RTKs play a key homostatic role as negative regulators of immune responses, contributing to the evasion of cancer cells from immune surveillance.

RESULTS

- RXDX-106 inhibited phosphorylation of TYRO3, AXL, and MER
- RXDX-106 completely inhibited tumor growth in NIH 3T3/TAM
- RXDX-106 inhibited ligand mediated AXL/MER activation on BMDM
- RXDX-106 inhibited phosphorylation of TYRO3, AXL, and MER
- RXDX-106 inhibited AXL- and MER-dependent phagocytosis

CONCLUSIONS

- RXDX-106 is a potent and selective TAM/c-MET inhibitor
- RXDX-106 is a highly potent, selective, and pseudo-irreversible inhibitor of TAM RTKs with durable target inhibition.
- RXDX-106 completely inhibited tumor growth as a single agent and in combination with anti-PD-1 antibody in the syngeneic CT26 model.
- RXDX-106 is a pseudo-irreversible biochemical profile (data not shown) drives greater cell-based potency and duration of target inhibition.

ACKNOWLEDGEMENTS

Working Model of RXDX-106 Mechanism of Action

Figure 1. Time course of the 4T1 breast cancer xenograft. Tumor volumes were measured at the indicated time points. *; p<0.05, **; p<0.01, ***; p<0.001

Figure 2. Axl and Mer Dependent Phagocytosis

Figure 3. Tumor Growth

Figure 4. Working Model of RXDX-106 Mechanism of Action

Figure 5. Effects of RXDX-106 on T cell response

Figure 6. Tumor volume and survival of 4T1 mouse breast carcinoma model

Figure 7. Anti-tumor and Pro-inflammatory Immune Response in syngeneic CT26 model

Figure 8. T-cell response

Figure 9. Macrophage NK cell Cancer cell DC T cell RXDX-106

Figure 10. Macrophage NK cell Cancer cell DC T cell RXDX-106

Figure 11. Macrophage NK cell Cancer cell DC T cell RXDX-106

Figure 12. Macrophage NK cell Cancer cell DC T cell RXDX-106

Figure 13. Macrophage NK cell Cancer cell DC T cell RXDX-106

Figure 14. Macrophage NK cell Cancer cell DC T cell RXDX-106

Figure 15. Macrophage NK cell Cancer cell DC T cell RXDX-106

Figure 16. Macrophage NK cell Cancer cell DC T cell RXDX-106

Figure 17. Macrophage NK cell Cancer cell DC T cell RXDX-106

Figure 18. Macrophage NK cell Cancer cell DC T cell RXDX-106

Figure 19. Macrophage NK cell Cancer cell DC T cell RXDX-106

Figure 20. Macrophage NK cell Cancer cell DC T cell RXDX-106

Figure 21. Macrophage NK cell Cancer cell DC T cell RXDX-106

Figure 22. Macrophage NK cell Cancer cell DC T cell RXDX-106

Figure 23. Macrophage NK cell Cancer cell DC T cell RXDX-106

Figure 24. Macrophage NK cell Cancer cell DC T cell RXDX-106

Figure 25. Macrophage NK cell Cancer cell DC T cell RXDX-106

Figure 26. Macrophage NK cell Cancer cell DC T cell RXDX-106